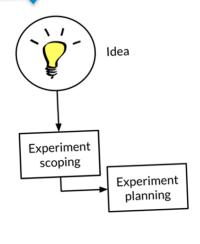

Experiment planning

Ivano Malavolta


Recall

Recall

2 - Experiment planning

- Define context
- Formulate hypotheses
- Identify input and output variables
- Design the study
- Instrumentation
- Analyze validity threats

VU

5 Ivano Malavolta / S2 group / Empirical software engineering

Roadmap

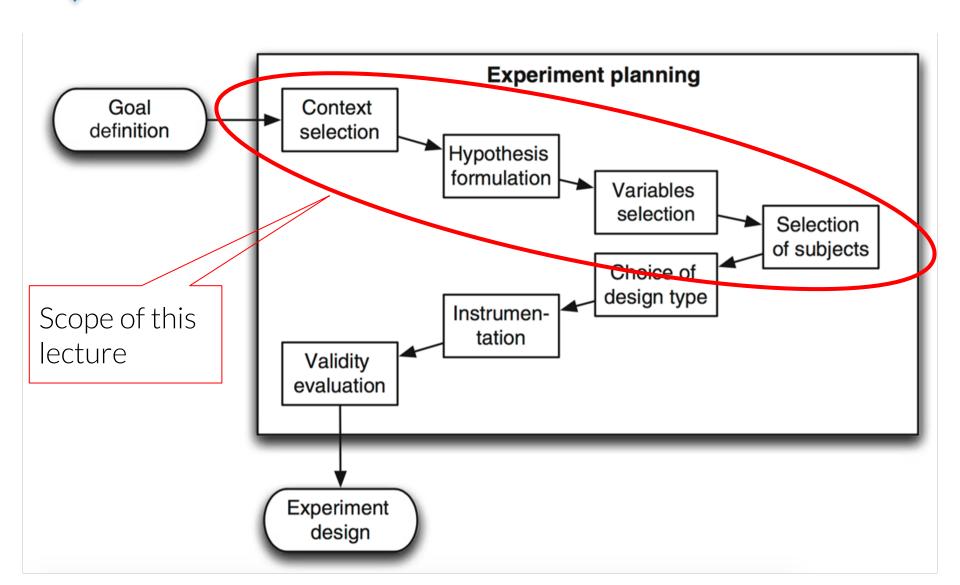
Experiment planning

Context selection

Research questions and hypotheses formulation

Variables selection

Subjects selection



Scoping VS planning

- Experiment scoping describes WHY we run an experiment
 - With a hint about the "how"
- The planning determines HOW the experiment will be executed
 - Be careful here → the result of the experiment can be disturbed (or even destroyed) if not planned properly

Planning phases

Context selection

We already heard about context...

Image encoding example - goal

Analyze	Encoding algorithms
for the purpose of	Evaluation
with respect to their	Energy Efficiency
from the point of view of	Software Developer
in the context of	Mobile Software Applications

Context selection

CONTEXT: the broad perspective of the experiment

Our **goal** here is to achieve the most general results → optimum: large real software projects, with practitioners

Many risks involved....

Context selection dimensions

Lab

Off-line

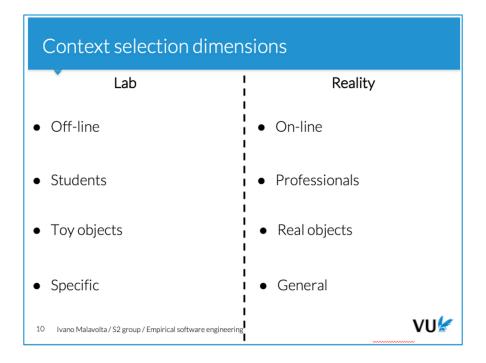
Students

Toy objects

Specific

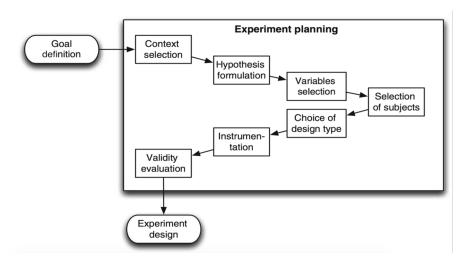
Reality

• On-line


Professionals

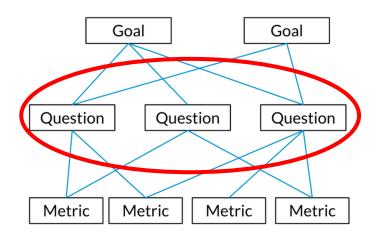
Real objects

General


Quick exercise

Think about the Image encoding case study and formulate a potential context for an experiment

Research questions and hypotheses formulation



Research questions formulation

Research questions detail the specific objectives of the empirical study

Incepted from the study definition

Starting point to identify the variables of interest of your study

Suggestions

Research questions should be as <u>clear</u> as possible

→ they will guide the whole experiment

Avoid "boolean" questions!

Avoid questions you cannot answer

What is the best JavaScript framework in terms of performance? What is the most productive programming language?

•••

Golden words: to what extent..., what is the impact of X to Y, what are the traits of Xs, what are the characteristics of T...

Remind that in your report you will <u>come back to them</u> and explicitly answer each of them in details

From research questions to hypotheses

- When a research question is going to be addressed by applying a <u>statistical test</u>, it is necessary to formulate an hypothesis
- Very useful to select what kind of statistical procedure you need to use

Not needed in all cases

Hypotheses formulation

- Conjecture (P)
 - Administration of treatment <u>has influence</u> on some features
- Consequence (Q)
 - We <u>observe</u> a significant difference in terms of some features

$$P \rightarrow Q$$

Hypotheses formulation

Hypothesis: a formal statement about a phenomenon

- Null hypothesis H_0 : no real trends or patterns in the experiment setting (aka \sim Q)
- Alternative hypothesis H_a: there are real trends or patterns in the experiment setting (aka Q)

There must be at least a pair of null and alternative hypotheses for each research question in your GQM

Falsification (modus tollens)

- We aim at rejecting the absence of trends (~Q is false)...
 - \circ we test the null hypothesis H₀

If we can reject the null hypothesis $\sim Q \rightarrow we$ can draw conclusions

This comes from Popper (1959): any statement in a scientific field is true until anybody can contradict it

- Aiming at verifying Q is WRONG
 - "Affirming the consequent"
 - Provides no insight on the conjecture

This is like a "guilty" verdict in a criminal trial: the evidence is sufficient to reject innocence

Example

Question:

 What is the impact of image encoding algorithms on the energy efficiency of mobile apps?

Conjecture (P):

 using different algorithms leads to different energy consumptions

• Consequence (Q):

 (when applying different algorithms) we observe a different energy consumption

Example

 Null hypothesis (¬Q): there is no change in terms of energy consumption

$$H_0$$
: mean(E_{png}) = mean(E_{jpg})

 Alternative hypothesis (Q): the energy consumption when using PNG images is different then the one consumed when using JPG images

$$H_a$$
: mean(E_{png}) != mean(E_{jpg})

What can happen now?

 H_0 : mean(E_{png}) = mean(E_{jpg})

- We <u>reject</u> the null hypothesis (~Q = false)
 - Q = true (with a certain probability)
 - our conjecture P has been corroborated → we are confident that different algorithms impact energy consumption (P)

- We <u>fail to reject</u> the null hypothesis (~Q = true)
 - \circ ~P = true

P → Q ~Q ~P

Modus tollens:

o our conjecture P has been falsified \rightarrow no conclusions can be made

Example

Native vs Web Apps: Comparing the Energy Consumption and Performance of Android Apps and their Web Counterparts

Ruben Horn, Abdellah Lahnaoui, Edgardo Reinoso, Sicheng Peng, Vadim Isakov, Tanjina Islam, Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands

{r.horn | a.lahnaoui | e.j.reinosocampos | s3.peng | v2.isakov}@student.vu.nl, {t.islam | i.malavolta}@vu.nl

Abstract—Context. Many Internet content platforms, such as Spotify and YouTube, provide their services via both native and Web apps. Even though those apps provide similar features to the end user, using their native version or Web counterpart might lead to different levels of energy consumption and performance. Goal. The goal of this study is to empirically assess the energy consumption and performance of native and Web apps in the context of Internet content platforms on Android.

Method. We select 10 Internet content platforms across 5 categories. Then, we measure them based on the energy consumption, network traffic volume, CPU load, memory load, and frame time of their native and Web versions; then, we statistically analyze the collected measures and report our results.

Results. We confirm that native apps consume significantly less energy than their Web counterparts, with large effect size. Web apps use more CPU and memory, with statistically significant difference and large effect size. Therefore, we conclude that native apps tend to require fewer hardware resources than their corresponding Web versions. The network traffic volume exhibits statistically significant difference in favour of native apps, with small effect size. Our results do not allow us to draw any

Abstract—Context. Many Internet content platforms, such as bottify and YouTube, provide their services via both native and et apps. Even though those apps provide similar features to the end output the provide sim

Fig. 1: Reddit native Android (left) vs Web app (right)

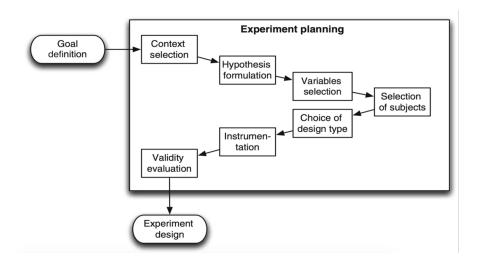
Variable	Description	RQ
Energy consumption (e)	Energy consumption is measured in Joules (J) as the energy consumed by the mobile device during the experi- ment run	RQ1
Network traffic (n)	Amount of data in Bytes (B) sent and received by the mobile device during the experiment run	RQ2
CPU load (c)	Mean relative (%) device CPU uti- lization across all cores	RQ2
Memory load (m)	Mean (kB) device memory utilization	RQ2
Frame time (f)	Median time in nanoseconds (ns) be- tween two successive frames (We use median as an aggregation measure, since we expect extreme outliers due to apps blocking on the main thread during certain operations)	RQ2

RQ1 How does energy consumption vary between native and Web versions of the same app?

RQ2 How does performance vary between native and Web versions of the same app?

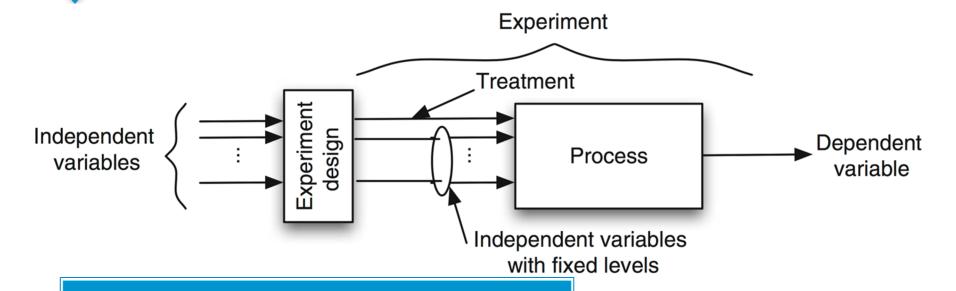
$$H_0: \mu_{e_{ ext{native}}} = \mu_{e_{ ext{Web}}} \ H_a: \mu_{e_{ ext{native}}}
eq \mu_{e_{ ext{Web}}}$$

$$\begin{split} H_0: \mu_{d_{\text{native}}} &= \mu_{d_{\text{Web}}} \ \, \forall d \in \{n, c, m, f\} \\ H_a: \mu_{d_{\text{native}}} &\neq \mu_{d_{\text{Web}}} \ \, \exists d \in \{n, c, m, f\} \end{split}$$



Other examples of hypotheses

Null Hypothesis	Alternative Hypothesis	Experiment
H ₀ : there is no difference in	H ₁ : the defect detection rates of	(Basili, 1996)
defect detection rates of	teams applying PBR are higher	
teams applying the PBR	compared to teams using the	
inspection technique as	usual technique	
compared to teams applying		
the usual technique		
H ₀ : classes declared as	H ₁ : classes declared as friends of	(Counsell, 1999)
friends of other classes have	other classes have less	
the same inheritance as other	inheritance than other system	
system classes	classes	
Ho: there is no difference	H ₁ : there is a difference between	(Fusaro, 1997)
	the various techniques with	, , ,
inspection techniques with	respect to the team scores on	
respect to the team scores on	defect detection rate	
defect detection rate		
H ₀ : there is no difference in	H ₁ : inspections with large teams	(Porter, 1997)
intervals neither in number of	have longer intervals, but find no	
	more defects than smaller teams	
inspections with large teams		
and with smaller teams		
H ₀ : there is no difference in	H ₁ : teams who begin an	(Shull, 2000)
effectiveness in teams who	implementation using an existing	
begin an implementation		
using an existing example		
and in teams who begin		
implementing from scratch		



Variables selection

Recap

Terminology

- Dependent variables: quantities observed in the study (a.k.a. response, output variables)
 - o e.g. energy consumption, image quality
- Independent variables: quantities that we are able to manipulate/control (a.k.a. input variables)
 - o e.g. encoding algorithm, size of image, operating system

Variables selection

- The choice of independent and dependent variables is usually done in parallel
- Some variables cannot be measured directly (e.g. productivity, code quality, effort...)
 - We use proxies to estimate them
 - proxies may introduce a construct validity threat: is what we are measuring a good representation of our variable?

Variables selection

- Independent variables should have some effect on the dependent ones
 - → do not choose variables randomly, think about your RQs

 After choosing the variables you have to define their types, scales, ranges → this is part of measurement theory

Hypotheses formulation

- There is always only 1 dependent variable
 - o e.g., power consumption
- ... and 1 independent variable (the main factor)
 - often one level for the control group

e.g. use of traditional technique

- one or more levels for experimental groups

e.g. use of new technique(s) tool(s)

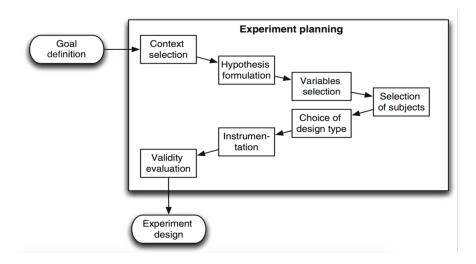
Other independent variables are the co-factors

Co-factors

Our main factor is not the only variable influencing the dependent variable(s)

 e.g., network instability of your experimental environment, usage patterns of the analysed websites, skills of subjects, experience of developers, ...

We will never account for all possible co-factors


Your best friend here is randomization

In a good experiment:

- You limit the effect of co-factors through a good experimental design
- You are able to **separate** the effect of co-factors from main factors
- You analyze the **interaction** of co-factors with main factor

Subjects selection

Subjects selection

- Population: the complete set of items of interest for our experiment
 - e.g. open-source software applications
 - o e.g., all existing progressive web apps
- Sample: representative selection of individuals for that population
 - o e.g. Apache, MySQL
 - e.g. progressive web apps mined from the Tranco list

Sampling techniques

- Probability Sampling: the probability of selecting each subject in the population is <u>known</u>
 - Simple Random Sampling: random selection from the population, probability is 1/total
 - Stratified random sampling: the population is divided into groups with a known distribution between the groups. Random sampling is then applied within each group
- Non-probability sampling: the probability of selecting each subject out of the population is <u>unknown</u>
 - Convenience: the most convenient (cost/distance/ complexity) subjects are selected [usually it is the only way to go]
 - Quota: you select (usually by convenience) samples from groups of subjects (e.g. male vs females, open-source vs closed source)

How big should be a sample?

Sample size: the larger, the better (more general results)

 If the population has a high variation, a larger sample size is needed

- Data analysis may influence sample size
 - some statistical tests have meaning only on large samples

Example of subjects selection

Selected Subjects and Usage Scenarios

Category	Subject	Usage scenario (looped)
News	• ESPN	Open news article, scroll down, continue with next article
	The Weather Channel	Check hourly forecast, check 10-day forecast, check radar
Social media • LinkedIn • Pinterest	• LinkedIn	Scroll personal feed, scroll jobs
	Scroll posts, open post, go back	
E-Commerce	 Coupang 	Open category, scroll products, open product page, check comments
	• Shopee	Open category, scroll products, open product page, check comments
Audio streaming	 SoundCloud 	Listen to promoted song
	Spotify	Search for a playlist, listen to playlist
Video streaming	• Twitch	Search for channel, watch channel
	YouTube	Search for video, watch video

Read the details in Section 3a in the MobileSoft 2023 paper on Canvas

What this lecture means to you?

You know how to:

- define the context of your experiment
- define research questions and hypotheses
- define independent and dependent variables
- strategies for selecting subjects

Next step

Measurement theory → how to define the "type" of variables

Readings

Chapter 8

- + All papers in the "Articles on performed experiments" folder in Canvas (only the part related to subjects selection and variables definition)
- + Example of assignment in Canvas

Acknowledgements

Some contents of this part of lecture extracted from:

- Giuseppe Procaccianti's lectures at VU
- Massimiliano Di Penta's lectures at GSSI (Italy)

